

Great Britain's High Speed Rail Plans

Prof Andrew McNaughton Chief Engineer, High Speed Two Ltd

Japan 1964

This was Britain...

hs

Classic Heritage Infrastructure

We Have 150kph Average Speeds

But Upgrading Is Hard Work

Why High Speed Rail...?

"There is more to life than increasing its speed"

– Mahatma Gandhi

Door To Door Journey Time

Door to Door Journey Time

Door to Door Journey Time

Door to Door Journey Time

HSR vs Car

HSR vs Car

- W Midlands to Manchester is 120km
- Road / Rail journey time 1½hr
- Need to better 3/4 hr
- We need 300kph+
- Or we build new motorways

Speed is not enough...

"L'enfers c'est les autres"

Next Generation Trains

Balancing Capacity

Mixing Traffic Speeds

Reducing Headway

Automatic Train Operation?

Automated Examination

Continuous Slab Track?

Relationship With GB Classic Rail?

Trains

- Length
 - Classic 245m
 - HS 2 x 200m = 400m
- Platform Height
 - Classic 915mm
 - HS 760mm

Initial Capacity

- Timetabled headway 3 mins
- Running to / from classic rail network
 - Only dedicated trains can be full length
 - Performance allowance for classic rail
- c14 train paths per hour
- Passenger capacity c9,000 seats per hour per line

Future Capacity

- Largely separate network
- ERTMS Level 3 and Automatic Train Operation
- Timetabled headway 2.5 mins
- Headway at 230kph junctions 3.5 mins
- 18 train paths per hour
- Passenger capacity c18,000 seats per hour per line

HS2 Study

- London West Midlands and then a future network
 - Demand modelling
 - Operational and technical specification
 - The best route
 - Strategic environmental assessment
 - Costs
 - Full business case
 - Funding and risk assessment
- In 11 months

Detailed Demand Modelling

- No premium on fares
- Journey times based on 360kph trains
- Included wider economic benefits
- A jumbo jet into Central London every 75 seconds

Stations for High Passenger Flows

HS1 London Olympic Box

Siting Of New HS Terminals

• Large City "A"

First Stage

Extend to Large City B

City Centre AND Parkway Stations

Go Near Smaller City C

Go Near Smaller City C

City C Develops Towards The HS Line

Business Case Led Specification

- Fully TSI compliant
 - GC Gauge
 - 400kph ultimate design speed
 - 2.5% max gradients
 - 360kph High Speed Trains only
- Meet all UK sustainability requirements
 - Protected historic sites
 - National and international environments
 - Biodiversity
 - Equalities assessments
- Detailed Costs and Risks
 - International benchmarking
 - Including operational and construction carbon estimates

Some Challenges

1 IS

Impact

Follow Existing Transport Corridors?

Energy Efficiency

Passenger km per kilo equivalent petrol

New Lower Impact Designs

Cars Too

Power Generation Mix

Power Generation Mix

Construction Carbon

• All lines lead to London?

• But if you are in the West Midlands...

• Or Scotland...

Journey Times of 45 mins

• Bringing the Northern Cities together

High Speed Rail London to the West Midlands and Beyond

A Report to Government by High Speed Two Limited

HS2 Initial Route

- London West Midlands
- The optimum engineered route
 - +/- 25m horizontally
 - +/- 0.5m vertically

An Engineered Route

London Euston

London Euston

Tunnel To Second London Station

West London Crossrail Interchange

London to West Midlands

Birmingham Airport Interchange

Delta Junction

- High speed junction to Birmingham City Centre
- Weave through motorway system
- Retain through speed of 400 km/h

New Birmingham Station

New Birmingham Station

Future Network

- Extending to
 - Newcastle 3
 - Scotland
- 3-00 to 2-00
- 4-20 to 2-40

London to

- Birmingham 1-24 to 0-49 – Manchester 2-08 to 1-15

- East Midlands 1-40 to 0-55
- Leeds 2-15 to 1-20

- Birmingham to
 - Manchester 1-34 to 0-40

 - Leeds 2-00 to 1-05

- Length
 - 540km
- Costs
 - London Birmingham
 - The full "Y"

- £16.5bn c£30bn
- Benefit/Cost Ratios
 - London Birmingham 2.7
 - Birm'ham Manchester 2.2
 - Birm'ham Leeds
- Huge

• Timing

- 2012 Strategic Consultation
- 2014 Start Act of Parliament
- 2018 Start Work
- 2026 Open to Birmingham
- 2030 The "Y" Complete

Great Britain's High Speed Rail Plans

Prof Andrew McNaughton 15th March 2010

